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Introduction
The strong force exhibits two striking phenomena:

Confinement

Dynamical Chiral Symmetry Breaking

Can these phenomena be attributed to a single mechanism?

Deconfinement and chiral symmetry restoration at coincident
temperatures

Centre Vortex Model

Many nice features

SU(2): String tension and chiral condensate
(de Forcrand and D’Elia: PRL 82, 4582 (1999)
Höllwieser et al.: PRD 78, 054508 (2009)).

SU(3): Most of the string tension
(Langfeld: PRD 69, 014503 (2004)).
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Testing the Model
Landau gauge Green’s functions have been used to great effect to
study the properties of QCD.

The quark propagator displays DχSB

Is it sensitive to centre vortices?

Calculation

SU(2) and SU(3) quenched gauge configurations.

1. Identify and isolate centre vortices

2. Rotate to Landau gauge

3. Calculate propagator with, only with and without vortices

4. Contrast and compare.
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QCD
Generalisation of Quantum Electrodynamics where colour is the strong
force’s version of charge: Quantum Chromodynamics.

L = −1

4
FµνF

µν +
∑

f

ψf (iγ
µ∂µ −mf + gγµAµ)ψf

Fµν = ∂µAν − ∂νAµ + g[Aµ, Aν ]

Gauge invariant: Dµ(x) −→ G(x)Dµ(x)G
†(x) G(x) = eiω(x)·T

c.f. Aµ(x) −→ Aµ(x) − ∂µω(x)

Gluons and Quarks.

Vector potentials, Aµ are (3x3) matrices: Self interactions.

g, quark masses only parameters.

Where does the mass come from?
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Euclidean Space
Generating functional:

Z[J, η, η] =

∫
DψDψDAe i

R

d3xdtL(x,t) + sources

with source terms:

“sources” ≡ JµA
µ + ηψ + ηψ

Rotation to imaginary time (Wick rotation): t→ −it.

Partition function:

Z[J, η, η] =

∫
DψDψDAe−

R

d4xL(x) + sources
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Discretisation
The gauge fields, Aµ, are replaced by parallel transport operators or links

Uµ(x) = P exp
{
iag

∫ 1

0

Aµ(x+ atµ̂)dt
}
∈ SU(3)

≃ eiagAµ(x)

Uµ(x) connects lattice sites x and
x+ aµ̂. Taking the inverse of a link
reverses its direction, and since
they are unitary:
U †
µ(x) = U−µ(x+ aµ̂).

U (x)

U (x)ν

µ
x x+

x+ν

µ

µ

ν

Gauge transformation law

UGµ (x) = G(x)Uµ(x)G
†
µ(x+ µ̂)

G(x) ∈ SU(3)
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The lattice gauge action is built of closed loops of links (which are gauge
invariant) called Wilson loops, the simplest of which is the plaquette

Pµν(x) = Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν (x)

SWG [U ] =
β

N

∑

plaquettes

Tr
{

1 − 1

2

(
Pµν + P †

µν

)}

= SG + O(a2).

The coupling constant of the theory has been absorbed into the
parameter,

β =
2N

g2
.
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Or Symanzik improved action:

SSG[U ] =
5β

3Nc

∑

pl

Tr
{
1 − 1

2

(
Pµν + P †

µν

)}
− β

12Ncu2
0

∑

rect

Tr
{
1 − 1

2

(
Rµν +R†

µν

)}

= SG + O(a4) + O(a2g2),

Discretisation of quarks:

SF [ψ, ψ, U ] =
∑

xy

ψ(x)M(x, y;U)ψ(y)

Partition function:
Z[0] =

∫
DψDψDU e−SG[U ]−SF [ψ,ψ,U ]

=

∫
DU det(M [U ]) e−SG[U ]

“Quenched approximation”: det(M [U ]) = 1

Partition function well defined even without gauge fixing.
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Static quark potential
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Landau Gauge Fixing
Landau gauge fixing is performed by enforcing the Lorenz gauge
condition,

∑
µ ∂µAµ(x) = 0 on a configuration by configuration basis. This

can be achieved in the continuum through the minimisation of the L2 norm

FG[A] =

∫
d4xTr

∑

µ

(
AGµ (x)

)2
.

On the lattice this may be formulated as the maximisation of a functional
such as,

FG[U ] =
1

2

∑

x,µ

Tr
{
UGµ (x) + UGµ

†
(x)

}
,

which is equivalent to the continuum condition up to O(a2).
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Note that finding a maximum of the above functional also ensures that
the Faddeev-Popov operator is positive: the configuration is inside the
Gribov region.

For any given configuration there are, in general, many local extrema
of the gauge fixing functional; each one corresponds to a Gribov copy.
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Gluon Propagator
Landau gauge:

∑
µ ∂µAµ(x) = 0 ∀x

〈Aµ(x)Aν(y)〉 =
1

Z[0]

∫
DψDψDU Aµ[U ](x)Aν [U ](y) e−SQCD[ψ,ψ,U ]

In Landau gauge, in the continuum, the gluon propagator has the tensor
structure

Dµν(q
2) =

(
δµν −

qµqν
q2

)
D(q2).

At tree-level

D(q2) =
1

q2
.

Three conjectures:

Infrared enhanced: D ∼ q−4 Confinement by OGE.

Infrared finite: D ∼ 1

Infrared vanishing: D ∼ √
q Violates positivity.
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Gluon Dressing Function

Quenched gluon dressing function on a variety of lattices.
F.D.R. Bonnet, POB, D.B. Leinweber, A.G. Williams, J.M. Zanotti, Phys.Rev.D64:034501,2001

POB, U.M. Heller, D.B. Leinweber, M.B. Parappilly, A. Sternbeck, L. von Smekal, A.G. Williams, J.B. Zhang, Phys.Rev.D76:094505,2007
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Quark loops

Sea quark mass dependence of the gluon dressing function.

POB, U.M. Heller, D.B. Leinweber, M.B. Parappilly, A.G. Williams Phys.Rev.D71:054607,2005
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Positivity violation
The gluon Schwinger function

POB et al., Phys.Rev.D76:094505,2007

R. Alkofer et al.
PRD 70, 014014 (2004) −→
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Deep infrared

Quenched gluon propagator on a
variety of lattices.
F.D.R. Bonnet et al., Phys.Rev.D64:034501,2001

POB et al., Phys.Rev.D76:094505,2007

Finer lattices

A. Sternbeck, E.-M. Ilgenfritz,

M. Mueller-Preussker, A. Schiller,

Phys.Rev.D72:014507,2005.

Statistical bounds

A. Cucchieri and T. Mendes,

Phys.Rev.Lett.100:241601,2008.

Very large lattices

A. Cucchieri and T. Mendes,

PoS LAT2007:297,2007.

Does vanish in 2D

Axel Maas,

Phys.Rev.D75:116004,2007.
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Quark Propagator
Landau gauge:

∑
µ ∂µAµ(x) = 0 ∀x

S(x, y) = 〈ψ(x)ψ(y)〉 =
1

Z[0]

∫
DU detM [U ]M−1[U ](x, y) e−SYM[U ]

In the (Euclidean) continuum:

S(q2) =
Z(q2)

iγ · q +M(q2)

M(q2) =
q2→∞

c

q2
[
ln(q2/Λ2

QCD)
]dM−1

+
m̂

[
ln(q2/Λ2

QCD)
]dM

where m̂ is the RGI (renormalisation group invariant) mass and the
anomalous dimension of the quark mass is dM = 12/(33 − 2Nf ) for Nf
quark flavours (zero here).
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Lattice Quark Propagator
O(a2) improved staggered action (Asqtad):

S tree(kµ) =
1

iγ · q(kµ) +m
, qµ ≡ sin(kµ)

[
1 +

1

6
sin2(kµ)

]
,

where

kµ =
2πnµ
aLµ

nµ ∈
[−Lµ

4
,
Lµ
4

)
.

Note:
Only half the Brilluoin zone.
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Quark Propagator

Lattice Landau gauge quark mass function (top) and wavefunction
renormalisaton function (bottom) for a single bare quark mass
(ma = 0.048).
POB, U.M. Heller, D.B. Leinweber, A.G. Williams, Nucl.Phys.Proc.Suppl.119:323-325,2003

POB, U.M. Heller, D.B. Leinweber, A.G. Williams, J.B. Zhang, Lect.Notes Phys.663:17-63,2005
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Finite volume effects

Finite volume effects: Asqtad quark mass function (top) and Z function
(bottom) for mass m ≃ 57 MeV at β = 4.60. Comparison on 123 × 24

lattice (open circles) and 16 × 32 lattice (solid squares).

POB, U.M. Heller, D.B. Leinweber, A.G. Williams, J.B. Zhang Nucl.Phys.Proc.Suppl.128:23-29 (2004)
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Comparison with DSE
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Quark loops

Lattice Landau gauge quark mass function (left) and wavefunction
renormalisation function (right) comparing quenched and unquenched
values for matched running masses.

POB, U.M. Heller, D.B. Leinweber, M.B. Parappilly, A.G. Williams and J.B. Zhang, Phys.Rev.D71:054507,2005
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Asymptotic Behaviour
In the Landau gauge, in the chiral limit (m̂ = 0), we have

c ≃ −4π2dM
3

〈ψψ〉
[ln(µ2/Λ2

QCD)]dM
,

where µ2 is a choice of renormalisation point. The RGI quark mass in the
top equation can be replaced by the running quark mass,

m(µ2)[ln(µ2/Λ2
QCD)]dM .

A fit of this asymptotic form to the mass function between 1.9 and 2.9 GeV
(51 data points) produces a value for the condensate of

(−〈qq〉)1/3 = 276(24) MeV.

From Z(p2) :

αs(µ
2)〈A2〉µ = 0.39(9) GeV2

E. Ruiz Arriola, POB and W. Broniowski, Phys.Rev.D70:097505,2004
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Chiral Limit

POB, U.M. Heller, D.B. Leinweber, A.G. Williams, J.B. Zhang, Lect. Notes Phys.663:17-63,2005
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Quark Masses
We calculate the pion mass using the Asqtad quark action on this set of
lattices and fit the five lowest masses to the form

amπ = aB
√
m0

to find the bare mass corresponding to the physical point. We find
am0 = 0.00215(1). Then we fit the lowest RGI masses to the form

am̂ = Aam0

and find A = 1.57(16). Putting these together we get

m̂ = 5.3(6) MeV.
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Thus by choosing the renormalisation point µ = 2 GeV and inserting
ΛMS

QCD = 239 MeV, we get

m(µ2)MS = 3.1(4) MeV.

The strange quark mass is determined from the mass of the φ and a
straight line interpolation between the relevant quark masses. The RGI
mass is

m̂s = 142(10) MeV.

which corresponds to

ms(µ
2)MS = 84(4) MeV.
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Centre Vortex Mechanism
Regge theory –> Nambu strings

Vortices –> Strings (Nielsen & Olesen)

Why look to the Centre?

Polyakov loop:
P (~x) = TrU4(~x, 1)U4(~x, 2).....U4(~x, T )

〈P (~x)〉 = e−FT

Consider transformation

U4(~x, t0) → zU4(~x, t0), z ∈ ZN

for some t0 and all ~x.

〈P (~x)〉 → z〈P (~x)〉

z z z z z z z zzzzz z
0

t x

t

〈P (~x)〉 =
{

0 unbroken ZN symmetry confined

non-zero broken ZN symmetry deconfined
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Centre Vortex Confinement
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Hunting Centre Vortices
The centre fluxes through an elementary plaquette
are represented by centre link elements Zµ(x)
which take values in the centre group Z3 ∈ SU(3):

Zµ(x) = exp
{
i
2π

3
mµ(x)

}
, mµ(x) ∈ {0, 1, 2} .

The task is to find a centre projection that is sensible
in the continuum limit. The standard solution is

∑

x,µ

∥∥∥UΩ
µ (x) − Zµ(x)

∥∥∥ Ω,Zµ−→ min.

After a suitable gauge transformation Ω(x), we are looking for those
centre links Zµ(x) which represent best a given link configuration Uµ(x).
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This implies that the overlap between the gauged links and the centre
links is maximized:

∑

x,µ

Re
[
TrUΩ

µ (x) Z†
µ(x)

]
Ω,Zµ−→ max. (1)

Hence, we will exploit the gauge degrees of freedom to bring UΩ
µ (x) as

close as possible to a centre element. Assuming that the deviations of
UΩ
µ (x) from a centre element are indeed small, one might approximately

solve (1) by setting

Zµ(x) ≈
1

3
TrUΩ

µ (x) , or Zµ(x) ≈
[1

3
TrU †Ω

µ (x)
]2

.
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Whence two gauge conditions obtained:

Rmes ≡
∑

x,µ

∣∣∣TrUΩ
µ (x)

∣∣∣
2 Ω−→ max, (2)

Rbar ≡
∑

x,µ

[
TrUΩ

µ (x)
]3 Ω−→ max. (3)

Both gauge conditions specify a particular Maximal Centre Gauge.

These two are referred to as the ‘mesonic’ and ‘baryonic’ centre
gauge respectively.

We will only use the mesonic gauge condition
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Centre Vortices: The Method
Identify centre vortices with the usual two step procedure.

Fix to Direct Maximal Centre Gauge:

Maximise (w.r.t. gauge transformations) the functional

F [U ] =
1

V NcND

∑

x,µ

Tr Uµ(x)2

Factor:

Uµ(x) = Zµ(x)Ũµ(x)

SU(N): Zµ(x) = e2πin/N n = 0, .., N − 1

Then if

Pµν(x) = Zµ(x)Zν(x+ µ̂)Z†
µ(x+ ν̂)Z†

ν(x) 6= 1

the plaquette is pierced by a centre vortex.
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MC Gauge Fixing Variant
Gauge fixing matrix g(x) ∈ SU(2)

g(x) = g0(x) + i~τ~g(x), G(x) =

(
g0(x)

~g(x)

)
,

where

g2
0(x) + ~g2(x) = 1.

F is locally maximised, site by site.

Choosing a single site, x0, the action of g(x0) is

F(x0) = GT (x0) M G(x0) − λ
(
GT (x0)G(x0) − 1

)
,

where M is a real symmetric 4 × 4 matrix depending on Uµ(x0) and
Uµ(x0 − µ) and λ is a Lagrange multiplier.
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MC Gauge Fixing 2
The eigenvectors and eigenvalues of the matrix M :

ek, λk, k = 1 . . . 4

Choosing an eigenvector for the gauge transformation, G(x0) = ek, the
local increase of the gauge fixing functional is:

F(x0) = λk

The largest eigenvalue gives the greatest change in F(x0).

Adopt a “simulated annealing like” procedure:

Choose G(x0) = ek

With a relative probability of eβfλk

Parameter βf → ∞ recovers standard method.
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MC Gauge Fixing 3
In practice, we started with βf = 0.02 and performed 25 sweeps through
the lattice until we increased βf by 0.1. The procedure stopped when no
further increase of the gauge fixing functional is achieved.

It turns out that the vortex matter arising from this procedure has good
phenomenological properties such as good scaling properties in the
continuum limit.

To test the latter aspect, we calculated the planar vortex area density ρ in
units of the (measured) string tension for several values of the lattice
spacing a using the standard Wilson action. For sufficiently small values
of the lattice spacing, the vortex density becomes independent of the
lattice regulator.
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P Vortices
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POB et al. In preparation
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Preconditioned Gaugefixing
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See also: Faber, Greensite and Olejnik, Phys. Rev. D 64, 034511 (2001)
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Centre vortex experiment
Landau gauge quark propagator displays DχSB

Is it sensitive to centre vortices?

Calculation

120 SU(2) Wilson action gauge configurations.

163 × 32, β = 1.35.

100 SU(3) Symanzik improved action gauge configurations.

163 × 32, β = 4.60.

1. Identify and isolate centre vortices

2. Rotate to Landau gauge

3. Calculate propagator with, only with and without vortices

4. Contrast and compare.
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SU(2) Quark Mass Function
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SU(2) Wavefunction Renormalisation
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SU(3) Quark Propagator

Lattice quark Z and M functions with (open circles) and without (red
squares) vortices for a single bare quark mass (ma = 0.048).
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Gluon Propagator
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The gluon dressing function. Black circles denote results from the original
untouched gauge fields, whereas red squares report the dressing function
after removing centre vortices.
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Conclusions
Quark and gluon propagators are useful probes of confinement and
chiral symmetry breaking.

Gluon is confined.

q2 → 0 ?

Quark propagator displays DχSB.

Confinement? Quark-gluon vertex.

Quenched SU(2) Landau gauge quark propagator similar to the one in
SU(3).

In SU(2), centre vortices do an excellent job of accounting for both
DχSB and confinement.

In SU(3) the vortex identification procedure misses some structure
important to DχSB but not confinement.
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Questions

1. Why does this method work so well in SU(2) but not SU(3)?

(a) Is SU(2) a good model for SU(3) in this case?

2. What are we missing in SU(3) that’s important for DχSB but not for
confinement?

3. What is the relationship between the static quark potential and light
quark confinement?

4. What will it take to falsify the centre vortex model?

5. Are we too devoted to the idea of a DχSB / Confinement mechanism?

(Just asking)
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